Thermodynamic efficiency and mechanochemical coupling of F1-ATPase.
نویسندگان
چکیده
F(1)-ATPase is a nanosized biological energy transducer working as part of F(o)F(1)-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Actually, fundamental questions such as how efficiently F(1)-ATPase transduces free energy remain unanswered. Here, we demonstrated reversible rotations of isolated F(1)-ATPase in discrete 120° steps by precisely controlling both the external torque and the chemical potential of ATP hydrolysis as a model system of F(o)F(1)-ATP synthase. We found that the maximum work performed by F(1)-ATPase per 120° step is nearly equal to the thermodynamical maximum work that can be extracted from a single ATP hydrolysis under a broad range of conditions. Our results suggested a 100% free-energy transduction efficiency and a tight mechanochemical coupling of F(1)-ATPase.
منابع مشابه
Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase.
F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular detail...
متن کاملSingle molecule thermodynamics of ATP synthesis by F1-ATPase
FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. Isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ-shaft. When a strong opposing torque is imposed, the γ-shaft rotates in the opposite direction and drives the ...
متن کاملTorque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase
Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical couplin...
متن کاملChemomechanical coupling of F1-ATPase under hydrolysis conditions
F1-ATPase (F1) is the smallest rotary motor protein that couples ATP hydrolysis/synthesis to rotary motion in a highly reversible manner. F1 is unique compared with other motor proteins because of its high efficiency and reversibility in converting chemical energy into mechanical work. To determine the energy conversion mechanism of F1-ATPase, we developed a novel single-molecule manipulation t...
متن کاملTheoretical Analysis of Mechanochem- Ical Coupling in the Biomolecular Mo- Tor Myosin
One of the most remarkable aspects of life processes concerns the efficient transformation of energy from one form to the other.[1] This is beautifully illustrated by biomolecular motors[2, 3, 4], which are ”nanomachines” that convert the chemical free energy in the form of ATP binding and/or hydrolysis into mechanical work (unidirectional motion) with high efficiency; the precise efficiency of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 44 شماره
صفحات -
تاریخ انتشار 2011